
Webnucleo Technical Report: wn matrix Module

David Adams and Bradley S. Meyer

June 4, 2008

The following will provide information regarding the routines that comprise
the wn matrix Module. The wn matrix Module is divided into two parts: rou-
tines that deal with creating and managing the WnMatrix structure, and rou-
tines for performing matrix operations with the WnMatrix structures. This
report describes the WnMatrix structures and details of some of the wn matrix
routines. The module itself can be found at:

http://www.webnucleo.org/home/modules/wn matrix/

1 wn matrix Structures Overview

WnMatrix is a structure for storing a matrix. As of version 0.2, elements of
the matrix are stored in a multi-dimensional hash, which provides excellent
flexibility in adding and removing elements from the matrix. The hash routines
used are those from libxml, the xml C parser and toolkit of the Gnome. Version
0.1, now no longer supported, used doubly-linked lists, which could require
O(N) operations, where N is the number of columns in the matrix, to store and
retrieve elements. The hash only requires O(1) operations.

The WnMatrix structure is central to the module, as the majority of the
routines contained within the module are used to either operate on the structure
or retrieve information about its contents. The structure itself is principally
comprised of a pointer to a libxml xmlHashTable pointer, in which the non-zero
elements are stored. Other structure elements are unsigned ints containing the
number of rows and columns in the matrix (the number of non-zero elements
is not kept but rather is retrieved by the libxml xmlHashSize routine). Finally,
there is a pointer to an internal data structure for use in callback routines on
the hash.

As of version 0.3, the clear and scale matrix routines are correct. Version 0.2
used hash callbacks for these routines but modified the hash during the callbacks.
This naturally led to undefined behavior. Version 0.3 also adds getCopy and
getTranspose routines to the API. These return new matrices that the caller
must free with WnMatrix free when no longer needed.

WnMatrix Line is a structure for storing data relevant to the non-zero ele-
ments of a line in the matrix, that is, a row or a column. These data are stored
in the structure as arrays.

1

As of release 0.4, we have introduced three new structures, namely, WnMa-
trix Coo, WnMatrix Csr, and WnMatrix Yale for storing the sparse matrix
in coordinate, compressed sparse row, and Yale sparse matrix format, respec-
tively. We have also rearranged the API to accomodate these changes, which
means there is a backward incompatibilty between release 0.4 and earlier ver-
sions. The reason for the change is to relieve the user of the burden of allocating
memory for these alternative sparse matrix formats. Thus, for example, when
the user calls WnMatrix getCoo(), a pointer to a coordinate matrix is returned.
The WnMatrix getCoo() routine does all the memory allocation. The routine
WnMatrix Coo getRowVector() then returns the coordinate row matrix array
(with a number of elements equal to the number of non-zero elements in the ma-
trix). The user frees the memory for the coordinate matrix (and, consequently,
the row array) by calling the WnMatrix Coo free() routine. Example codes in
the src/examples directory of the distribution demonstrate how this works.

Our philosophy has been that the user should not have to worry about
the data structures used by wn matrix. Instead, we intend that the user should
interact with the wn matrix structures via the API routines. For this reason, the
API does not make the content of the wn matrix structures public. Nevertheless,
the interested user may find their prototypes located in the WnMatrix header
file WnMatrix.h.

2 wn matrix Routines

For documentation on the wn matrix routines, see the WnMatrix.h file in the
Overview in the Technical Resources for the current release. The documenta-
tion provides a brief description of each routine, the prototype, pre- and post-
conditions, and examples on using the routines.

As of release 0.5, we have introduced routines to read input matrix data
from XML and output matrix data to XML. For example, the routine Wn-
Matrix new from xml() inputs matrix data in row, column, value triplets from
an XML file and creates a matrix based on those data. The routines Wn-
Matrix Coo writeToXmlFile(), WnMatrix Coo writeToXmlFile(), and Wn-
Matrix Coo writeToXmlFile() output coordinate, compressed sparse row, and
Yale matrix forms of the matrix to XML output. A new routine also allows
the user to validate the input XML file against Webnucleo.org’s input matrix
schema for version 0.5 (future releases will have similar xsd pub directories).
For more details, the user should consult the API documentation.

As of version 0.7, wn matrix uses the gnu gsl scientific library vector struc-
ture when interacting with vectors. This change of course means that wn matrix
now depends on gsl as well as libxml. We have added routines to parse in vec-
tor data from an xml file (WnMatrix new gsl vector from xml()), to validate
the xml (WnMatrix is valid vector input xml()), and to dump a gsl vector to
an xml file (WnMatrix write gsl vector to xml file()). While it is possible to
interact with the elements of the gsl vector data structure directly (see the gsl
documentation), we have also added API routines to get the size of the vec-

2

http://www.webnucleo.org/home/modules/wn_matrix/0.5/xsd_pub/coordinate_matrix.xsd

tor (WnMatrix get gsl vector size()) and to retrieve the data array from the
gsl vector (WnMatrix get gsl vector array()).

Our change over to using gsl vectors simplifies the wn matrix API for the
matrix times vector and transpose matrix times vector routines. It nevertheless
introduces a backwards incompatibility. While we could have kept the routines

WnMatrix getMatrixTimesVector()

and

WnMatrix getTransposeMatrixTimesVector()

and deprecated them, we decided to remove them and replace them with

WnMatrix computeMatrixTimesVector()

and

WnMatrix computeTransposeMatrixTimesVector().

This is desirable since the old routines did not in fact retrieve (get) pre-existing
data but rather computed them. The new routines not only have simplified calls
because they use gsl vectors, but their names also better reflect their function-
ality.

Because wn matrix now depends on gsl, it made sense in version 0.7 for
us also to replace WnMatrix getDenseMatrix() that returned a double** with
WnMatrix getGslMatrix() that returns a gsl matrix *. This makes for a cleaner
interface in the API and easier allocations. Also, we added WnMatrix solve(),
a routine that solves a matrix equation Ax = b, given input vector A and right-
hand-side vector b. The routine uses gsl linear algebra routines to solve the
equation.

3

	wn_matrix Structures Overview
	wn_matrix Routines

