Webnucleo Technical Report: wn_matrix Module

David Adams and Bradley S. Meyer
September 28, 2007

The following will provide information regarding the routines that comprise
the wn_matrix Module. The wn_matrix Module is divided into two parts: rou-
tines that deal with creating and managing the WnMatrix structure, and rou-
tines for performing matrix operations with the WnMatrix structures. This
report describes the WnMatrix structures and provides some example code
demonstrating the use of wn_matrix routines. The module itself can be found
at:

http://www.webnucleo.org/home/modules/wn_matrix/

1 wn_matrix Structures Overview

WnMatriz is a structure for storing a matrix. As of version 0.2, elements of
the matrix are stored in a multi-dimensional hash, which provides excellent
flexibility in adding and removing elements from the matrix. The hash routines
used are those from libxml, the xml C parser and toolkit of the Gnome. Version
0.1, now no longer supported, used doubly-linked lists, which could require
O(N) operations, where N is the number of columns in the matrix, to store and
retrieve elements. The hash only requires O(1) operations.

The WnMatrix structure is central to the module, as the majority of the
routines contained within the module are used to either operate on the structure
or retrieve information about its contents. The structure itself is principally
comprised of a pointer to a libxml xmlHashTable pointer, in which the non-zero
elements are stored. Other structure elements are unsigned ints containing the
number of rows and columns in the matrix (the number of non-zero elements
is not kept but rather is retrieved by the libxml xmlHashSize routine). Finally,
there is a pointer to an internal data structure for use in callback routines on
the hash.

As of version 0.3, the clear and scale matrix routines are correct. Version 0.2
used hash callbacks for these routines but modified the hash during the callbacks.
This naturally led to undefined behavior. Version 0.3 also adds getCopy and
getTranspose routines to the API. These return new matrices that the caller
must free with WnMatrix__free when no longer needed.

WnMatriz__Line is a structure for storing data relevant to the non-zero ele-
ments of a line in the matrix, that is, a row or a column. These data are stored
in the structure as arrays.

As of release 0.4, we have introduced three new structures, namely, WnMa-
trixz__Coo, WnMatriz__Csr, and WnMatriz__Yale for storing the sparse matrix
in coordinate, compressed sparse row, and Yale sparse matrix format, respec-
tively. We have also rearranged the API to accomodate these changes, which
means there is a backward incompatibilty between release 0.4 and earlier ver-
sions. The reason for the change is to relieve the user of the burden of allocating
memory for these alternative sparse matrix formats. Thus, for example, when
the user calls WnMatriz__getCoo(), a pointer to a coordinate matrix is returned.
The WnMatriz__getCoo() routine does all the memory allocation. The routine
WnMatriz__Coo__getRow Vector() then returns the coordinate row matrix array
(with a number of elements equal to the number of non-zero elements in the ma-
trix). The user frees the memory for the coordinate matrix (and, consequently,
the row array) by calling the WnMatriz-_Coo__free() routine. Example codes in
the src/examples directory of the distribution demonstrate how this works.

Our philosophy has been that the user should not have to worry about the
data structures used by wn_matrix. Instead, we intend that the user should
interact with the wn_matrix structures via the API routines. For this reason,
the API does not make the content of the wn_matrix structures public. Never-
theless, the interested user may find them located in the WnMatrix header file
WnMatrix.h.

2 wn_matrix Routines

For documentation on the wn_matrix routines, see the WnMatrix.h file in the
Overview in the Technical Resources for the current release. The documenta-
tion provides a brief description of each routine, the prototype, pre- and post-
conditions, and examples on using the routines.

3 Example C Code Calling WnMatrix Structure

The following code shows how to use the WnMatrix structure and routines in
a C code. It is included in the distribution as examplel.c. To compile, use
Makefile; thus, type make examplel. Examples 2-9 are also included in the
distribution, and may be compiled in the same fashion.

#include "WnMatrix.h"
int main(void) {

unsigned int i_row, i_col;
WnMatrix * p_my_matrix;

/*

// Create a 3 x 3 matrix called my_matrix and a pointer to it
// called p_my_matrix.

// */
p_my_matrix = WnMatrix__new(3, 3);
/* Assign the following matrix:

| 10. O. 3. |

| 0. O. 0. |

| -5 2. 0. |
*/
WnMatrix__assignElement(p_my_matrix, 1, 2, 1.); /* Remove this below */
WnMatrix__assignElement(p_my_matrix, 1, 1, 10.);
WnMatrix__assignElement(p_my_matrix, 3, 1, -2.5);
WnMatrix__assignElement (p_my_matrix, 3, 2, 2.);
WnMatrix__assignElement(p_my_matrix, 3, 1, -2.5);
WnMatrix__assignElement(p_my_matrix, 1, 3, 3.);
if (WnMatrix__removeElement(p_my_matrix, 1, 2) == -1) {

fprintf(stderr, "Couldn’t remove element!\n");
return EXIT_FAILURE;

}
/%
// Print out the matrix.
// */

printf("\nThe elements of the matrix are:\n\n");
printf("Row Column Value\n");
printf("--- ----—— ————- \n");

i_row = 1;
i_col

I
=

for (i_row = 1; i_row <= 3; i_row++) {

for (i_col = 1; i_col <= 3; i_col++) {

printf("%3d %6d %5.1f\n",
i_row,
i_col,
WnMatrix__getElement (p_my_matrix, i_row, i_col)

)

}
}
printf (
"\nNumber of non-zero elements = %d\n",
WnMatrix__getNumberOfElements(p_my_matrix)
);
/%

// Double the elements of the matrix and print out.

//

WnMatrix__scaleMatrix(p_my_matrix, 2.);

printf("\nThe elements of the matrix are (when doubled) :\n\n");
printf("Row Column Value\n");
printf("--- -——--—— - \n");

i_row = 1;
i_col

]
-

for (i_row = 1; i_row <= 3; i_row++) {
for (i_col = 1; i_col <= 3; i_col++) {

printf("%3d %64 %5.1f\n",
i_row,
i_col,
WnMatrix__getElement (p_my_matrix, i_row, i_col)

)

}
}
printf (
"\nNumber of non-zero elements = %d\n",
WnMatrix__getNumberOfElements(p_my_matrix)
);

/*

// Clear matrix. Since we only clear p_my_matrix, we

can still use

it.

//
printf("\nNow clear matrix:\n\n");
WnMatrix__clear(p_my_matrix);
printf (

"Number of non-zero elements = %d\n\n",

WnMatrix__getNumberOfElements(p_my_matrix)
)

*/

/%
// Assign element and print number of elements.

//

printf("Now add element:\n\n");
WnMatrix__assignElement(p_my_matrix, 1, 1, 1.);

printf (
"Number of non-zero elements = %d\n\n",
WnMatrix__getNumberOfElements(p_my_matrix)
)

/*

// Now free matrix.

//

printf("Now free matrix.\n\n");
WnMatrix__free(p_my_matrix);

/*

// Since p_my_matrix freed, must reallocate to reuse.

//

printf("Now re-create matrix.\n\n");
p_my_matrix = WnMatrix__new(3, 3);

printf (
"Number of non-zero elements = %d\n\n",
WnMatrix__getNumberOfElements(p_my_matrix)
);

/%

// Assign element and print number of elements.

//

printf("Now add element:\n\n");
WnMatrix__assignElement(p_my_matrix, 1, 1, 1.);

printf(
"Number of non-zero elements = %d\n\n",
WnMatrix__getNumberOfElements(p_my_matrix)
)

/%
// Clean up and exit.
//

WnMatrix__free(p_my_matrix);

return EXIT_SUCCESS;

	wn_matrix Structures Overview
	wn_matrix Routines
	Example C Code Calling WnMatrix Structure

