
Webnucleo Technical Report: wn matrix Module

David Adams

October 13, 2006

The following will provide information regarding the routines that comprise
the wn matrix Module. The wn matrix Module is divided into two parts: rou-
tines that deal with creating and managing the WnMatrix structure, and rou-
tines for performing matrix operations with the WnMatrix structure. This re-
port describes the function and usage of these routines, as well as the WnMatrix
structure itself. The module itself can be found at:

http://nucleo.ces.clemson.edu/home/modules/wn matrix/0.1

1 wn matrix Structures Overview

WnMatrix is a structure for storing a matrix. Elements of the matrix are
contained within an array of doubly-linked lists, which provide flexibility in
adding and removing elements from the matrix. The WnMatrix structure is
central to the module, as all routines contained within the module are used to
either operate on the structure or retrieve information about its contents. The
structure itself contains an array, the indices of which point to the first element
of their respective rows, variables that store the (fixed) number of columns and
rows of the matrix, and a variable with the total number of (dynamic) elements
currently in the matrix. However, these structure members are not intended to
be accessed directly, but rather through the helper routines. The members of
the structure are not intended to be accessed directly, but the interested user
may find them located in the WnMatrix header file WnMatrix.h.

The elements are stored within an Element structure, and are added to the
matrix as instances of this structure. In addition to the variable containing the
value of the element, there are also pointers to the next and previous elements
of the row (if ones exist), and a variable representing the column number of that
particular element.

2 wn matrix Routines

The following is a list of the prototypes for all the routines contained within the
wn matrix module, as well as a brief description of their purpose.

1

• WnMatrix *WnMatrix__new(

int *p_rows,

int *p_columns

);

C routine to initialize a WnMatrix structure.

• void WnMatrix__assignElement(

WnMatrix *self,

int *p_row,

int *p_col,

double *p_val

);

C routine to assign an element to a WnMatrix structure. If an element
already exists at that (row,col), the new value is added to the existing
value.

• double WnMatrix__getElement(

WnMatrix *self,

int *p_row,

int *p_col

);

Retrieves the value of the specified matrix element.

• void WnMatrix__removeElement(

WnMatrix *self,

int *p_row,

int *p_col

);

Removes the specified matrix element from the matrix.

• void WnMatrix__clearRows(

WnMatrix *self,

int *p_n_rows

);

Removes the elements of the matrix up to the specified row.

• long int WnMatrix__getNumberElements(

WnMatrix *self

);

Returns the number of elements in the matrix.

• int WnMatrix__getNumberRows(

WnMatrix *self

);

Returns the number of rows in the matrix.

2

• long int WnMatrix__getNumberColumns(

WnMatrix *self

);

Returns the number of columns in the matrix.

• void WnMatrix__getDiagElems(

WnMatrix *self,

double a_y[]

);

Stores the values of the diagonal elements in the double array passed into
the function.

• int WnMatrix__isEmpty(

WnMatrix *self,

int i_row

);

Checks to see whether or not the given row is empty.

• void WnMatrix__getYsm(

WnMatrix *self,

int a_ija[],

double a_sa[]

);

Stores the matrix in Yale Sparse format in the arrays passed into the
function.

• void WnMatrix__getCsr(

WnMatrix *self,

int a_rwptr[],

int a_col[],

double a_val[]

);

A C routine to convert a WnMatrix into Compressed Sparse Row format.

• void WnMatrix__getMatrixTimesVector(

WnMatrix *self,

int *p_vector_size,

double a_vector_input[],

double a_vector_output[]

);

Computes the matrix equation Y = Ax given A and x.

• void WnMatrix__getTransposeMatrixTimesVector(

WnMatrix *self,

int *p_vector_size,

double a_vector_input[],

3

double a_vector_output[]

);

Computes the matrix equation Y = A(transpose)x given A and x.

• WnMatrix * WnMatrix__getTransferMatrix(

WnMatrix *self

);

Returns the F matrix (aij/aii, but no diagonal elements).

• void WnMatrix__delete(

WnMatrix *self

);

C routine to free the memory allocated for a WnMatrix structure.

• int WnMatrix__solveMatrixWithSparskit(

WnMatrix *self,

double a_rhs[],

double a_sol[],

double a_guess[]

);

C routine to solve matrix equation Ax = b by calling Sparskit routines.

• void WnMatrix__scaleMatrix(

WnMatrix *self,

double d_val

);

C routine to multiply all the elements in the matrix by a scalar constant.

• void WnMatrix__addElementToDiagonals(

WnMatrix *self,

double d_val

);

C routine to add a value to the diagonal elements of the matrix.

• int WnMatrix__writeMatrixToAsciiFile(

WnMatrix *self,

char * s_ascii_filename,

double d_cutoff

);

C routine to write out the elements of a matrix stored in a WnMatrix
structure.

3 Example C Code Calling WnMatrix Structure

The following code shows how to use the WnMatrix structure and routines in
a C code. It is included in the distribution as example1.c. To compile, use

4

Makefile; thus, type make example1. Examples 2-6 are also included in the
distribution, and may be compiled in the same fashion.

#include "WnMatrix.h"

int main() {

int i_rows, i_cols;

int i_row, i_col;

double d_val;

WnMatrix * p_my_matrix;

/* Create a matrix called my_matrix and

a pointer to it called p_my_matrix. */

/* Create a 3 by 3 matrix */

i_rows = 3;

i_cols = 3;

p_my_matrix = WnMatrix__new(&i_rows, &i_rows);

/* Assign the following matrix:

| 10. 0. 3. |

| 0. 0. 0. |

| -5. 2. 0. |

*/

i_row = 1;

i_col = 1;

d_val = 10.;

WnMatrix__assignElement(p_my_matrix, &i_row, &i_col, &d_val);

i_row = 3;

i_col = 1;

d_val = -5.;

WnMatrix__assignElement(p_my_matrix, &i_row, &i_col, &d_val);

i_row = 3;

i_col = 2;

d_val = 2.;

WnMatrix__assignElement(p_my_matrix, &i_row, &i_col, &d_val);

i_row = 1;

i_col = 3;

d_val = 3.;

5

WnMatrix__assignElement(p_my_matrix, &i_row, &i_col, &d_val);

/* Print out the matrix */

printf("\nThe elements of the matrix are:\n\n");

printf("Row Column Value\n");

printf("--- ------ -----\n");

i_row = 1;

i_col = 1;

for (i_row = 1; i_row <= 3; i_row++) {

for (i_col = 1; i_col <= 3; i_col++) {

printf("%3d %6d %5.1f\n",

i_row,

i_col,

WnMatrix__getElement(p_my_matrix, &i_row, &i_col)

);

}

}

printf("\n");

return 0;

}

6

